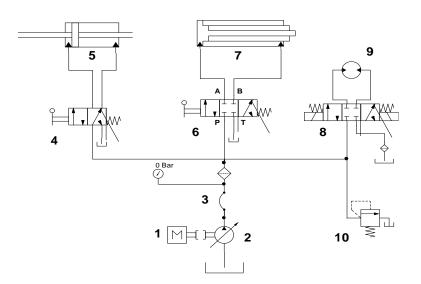
CORPORACION EDUCACIONAL APRIMIN ADOTEC	MÓDULO	OLEOHIDRÁULICA BÁSICA	0	PROFESOR ALUMNO		
	UNIDAD III	SISTEMAS				
	GUÍA DE TRABAJO N° 2	CIRCUITOS	PRÁCTICA N° PPT N° 2			
				OTRO		
NOMBRE			FECHA		CURSO	

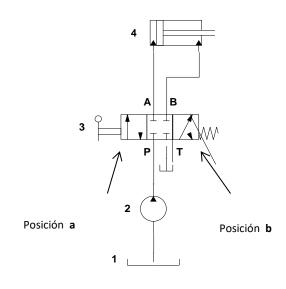
Esta Guía se trabaja después de haber visto el PPT N° 2 de la Unidad 3.

LUGAR: Sala. **TIEMPO**: 45 min.


DINÁMICA DE TRABAJO: Según indicaciones del profesor EN PAREJAS.

OBJETIVO:

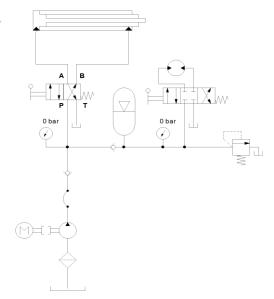
 Describir el funcionamiento de un sistema hidráulico a partir de una representación de un sistema hidráulico sencillo.


1. Identifique los componentes del siguiente circuito.

1.	2.	3.	4.	5.
6.	7.	8.	9.	10.

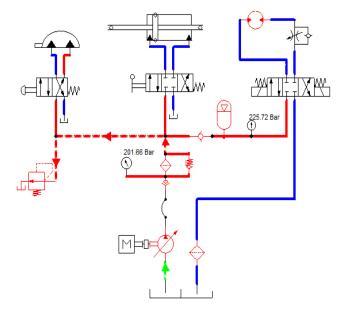
2. Elija una de las opciones señaladas en la siguiente tabla para completar el enunciado de manera que describa el sistema que muestra la representación gráfica.

	Opciones					
a.	dos	un				
b.	palanca	resorte				
c.	dos	tres				
d.	doble	simple				
e.	balanceado	desbalanceado				
f.	energía hidráulica	fuerza de gravedad				
	distinta					
g.		igual				
h.	а	b				
i.	a	b				
j.	presión	caudal				
k.	fijo	variable				
I.	dos	un				
m.	no	si				

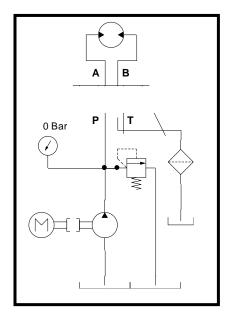


Este es un sistema de	(a) circuito(s)	comandado por una	a válvula de
accionada por	(b) de(c)	posiciones, de man	ido manual y retorno
por resorte. El cilindro act	uador es de	(d) efecto	(e), esto implica
que al extenderse utiliza e	energía hidráulica y a	l retraerse	(f). La fuerza
que requiere este actuado	or para extenderse es	(g)	a la que requiere
para retraerse. Cuando la	válvula tome la posi	ción(h	a) el cilindro se
extenderá, y cuando tome	e la posición	(i) el cilindro se	contraerá.
La bomba hidráulica que e	envía (j) al siste	ema es una bomba	de caudal (k).
Este sistema en la realidad	d cuenta con	(I) estanque(s). El	actuador (m)
se puede detener en cualo	quier punto del recori	ido.	

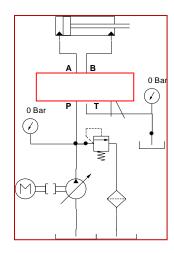
3. En el espacio designado debe anotar una V o una F según la afirmación sea verdadera o falsa en relación al sistema señalado.

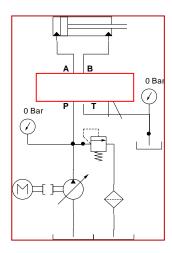

Sistema A:

- 1) _____ Este sistema cuenta con una bomba de caudal fijo.
- 2) ____ Este sistema cuenta con filtro de retorno.
- 3) ____ Este sistema tiene todas sus líneas hidráulicas rígidas.
- 4) _____ Ambas válvulas de control direccional son accionadas eléctricamente.
- 5) ____ El acumulador permite que el motor hidráulico continúe girando aun cuando la bomba deje de funcionar.
- 6) ____ La válvula check que se encuentra al costado del acumulador retiene el fluido presurizado del circuito del motor hidráulico.

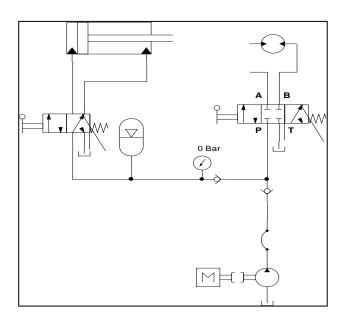


Sistema B:


- 7) ____ Este sistema posee tres circuitos.
- 8) ____ Este sistema tiene una línea flexible en la línea de presión.
- 9) ____ La válvula de control del cilindro hidráulico es una válvula 4/3 de palanca.
- 10) ____ El cilindro hidráulico puede adoptar sólo dos posiciones.
- 11) ____ La válvula de seguridad sólo libera la presión del actuador angular.
- 12) _____ Si se desconecta la bomba hidráulica la presión del sistema baja en forma inmediata.
- 13) _____ Entre la válvula de solenoide y el motor hidráulico se observa una válvula de control de caudal.



4. ¿Qué tipo de válvula le pondría a un circuito que requiere hacer funcionar un motor hidráulico bidireccional? Justifique su respuesta y complete el diagrama con la válvula correspondiente.


- 5. Complete cada uno de los diagramas siguientes con una válvula de control direccional accionada por palanca que permita que el actuador se detenga sólo en dos posiciones totalmente afuera o totalmente adentro.
 - En el diagrama de la izquierda, ubíquela de manera que el actuador se extienda.
 - En el diagrama de la derecha ubíquela de manera que el actuador se retraiga.

- 6. En el siguiente sistema se observan dos circuitos, uno que mueve el motor y otro que mueve un cilindro de doble efecto.
 - 1.- ¿Cuál es la función del acumulador en este sistema?
 - 2.- ¿Por qué el manómetro se encuentra en esa ubicación?

- 7. Represente gráficamente un sistema que considere los siguientes componentes.
 - 1 Depósito hidráulico.
 - 1 Bomba hidráulica de volumen constante accionada por un motor eléctrico.
 - 1 Válvula de seguridad.
 - 2 Manómetros uno para la línea de presión y otro para la línea de retorno.
 - 1 Válvula de control direccional 3/2 accionada por palanca y recuperada por resorte.
 - 1 Cilindro actuador hidráulico de simple efecto recuperado por resorte.